Higher commutator conditions for extensions in Mal'tsev categories
نویسندگان
چکیده
منابع مشابه
Higher Central Extensions in Mal'tsev Categories
Higher dimensional central extensions of groups were introduced by G. Janelidze as particular instances of the abstract notion of covering morphism from categorical Galois theory. More recently, the notion has been extended to and studied in arbitrary semi-abelian categories. Here, we further extend the scope to exact Mal’tsev categories and beyond. For this, we consider conditions on a Galois ...
متن کاملCentral Extensions and Nilpotence of Maltsev Theories
Relationship is clariied between the notions of linear extension of algebraic theories, and central extension, in the sense of commutator calculus, of their models. Varieties of algebras turn out to be nilpotent Maltsev precisely when their theories may be obtained as results of iterated linear extensions by bifunctors from the so called abelian theories. The latter theories are described; they...
متن کاملCharacterizations of Several Maltsev Conditions
Tame congruence theory identifies six Maltsev conditions associated with locally finite varieties omitting certain types of local behaviour. Extending a result of Siggers, we show that of these six Maltsev conditions only two of them are equivalent to strong Maltsev conditions for locally finite varieties. Besides omitting the unary type [24], the only other of these conditions that is strong i...
متن کاملRelative commutator theory in semi-abelian categories
Based on the concept of double central extension from categorical Galois theory, we study a notion of commutator which is defined relative to a Birkhoff subcategory B of a semi-abelian category A. This commutator characterises Janelidze and Kelly’s B-central extensions; when the subcategoryB is determined by the abelian objects inA, it coincides with Huq’s commutator; and when the category A is...
متن کاملOn the Complexity of Some Maltsev Conditions
This paper studies the complexity of determining if a finite algebra generates a variety that satisfies various Maltsev conditions, such as congruence distributivity or modularity. For idempotent algebras we show that there are polynomial time algorithms to test for these conditions but that in general these problems are EXPTIME complete. In addition, we provide sharp bounds in terms of the siz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2018
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2018.09.002